If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+11x-20=0
a = 5; b = 11; c = -20;
Δ = b2-4ac
Δ = 112-4·5·(-20)
Δ = 521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{521}}{2*5}=\frac{-11-\sqrt{521}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{521}}{2*5}=\frac{-11+\sqrt{521}}{10} $
| 5(10k+1)+2(2+8k)=0 | | 3u-61=4u-83 | | 2x(x-3)=8x^2-11x | | M=36+n | | 5s+51=34 | | t/3-5=7 | | -6n+3=4n+27 | | x-(5/7)x+(3/4)=-(1/7)(x+3/2) | | y÷.23=12 | | 15/12=x-3/8 | | 36x=15 | | 3^x=3600 | | 12-8=z÷5 | | -11+1.8c=32 | | 8-4(4z-5)=2z-4(4z-z) | | -7(4b+2)+(29b−4)=0 | | 6(3x+4)=9(2x-3) | | 7(28x−35)=43(9x−15) | | —2(m+6m)—6=—4(m+6)—4m | | 1/2(y-2)=28 | | 1/5x=5000 | | 2x+30+120=180 | | 1/3a-12=4/4a+6 | | x+144=-x(2+9) | | 2x2+4x=12+x2 | | x/5=5+x-9/3 | | 2x2+4x=12× | | 2x+3(5x-10)=22 | | n+4÷4n=6/4 | | 9x2=10x | | -6(7+3n)-5=-137 | | 0.3x-54=180 |